Quenching Cross-Sections of the Metastable Mercury Atom (6³P₀)

Hiroyuki Horiguchi and Soji Tsuchiya

Department of Pure and Applied Sciences, College of General Education, The University of Tokyo, Meguro-ku, Tokyo (Received July 9, 1971)

Recently, Callear and McGurk¹⁾ reported that the cross-sections for the deactivation of Hg(63P0) atoms were larger by an order of magnitude than their former data2) which showed a considerablly less reactivity of $Hg(6^3P_0)$ atoms compared to that of $Hg(6^3P_1)$ atoms. Cambell et al.3 measured the absorption of Hg(63P₀) in the gaseous mixture of N2, quencher and mercury which was excited by the 2537 Å radiation. Their data support the larger cross-sections for quenching Hg(6³P₀) atoms. We proposed a method⁴) to determine the cross-section for each process, $6^3P_1 \rightarrow 6^3P_0$, $6^{3}P_{1}\rightarrow6^{1}S_{0}$, and $6^{3}P_{0}\rightarrow6^{1}S_{0}$, and found that the crosssections for $6^3P_0{\longrightarrow}6^1S_0$ were not so small as Callear and William's results.2) Recently, we measured the time-history of the 4047 Å absorption of Hg(6³P₀) after the flash irradiation of the 2537 Å radiation, and observed the cross-section of a reactive molecule for quenching Hg(63P₀) atoms. The results are shown in Table 1.

The cross-sections for quenching the 6^3P_0 state are in agreement with the new data of Callear and McGurk⁵) within a factor of 5. It is seen from Table 1 that the ratio of the quenching corss-section for the process $6^3P_1 \rightarrow 6^1S_0$ to that for $6^3P_0 \rightarrow 6^1S_0$ is close to 3 except for the case of quenching by N_2 , CH_4 , or CO_2 , which

has a larger ratio. Recent results of Vikis and Moser⁶⁾ by a chemical method show that the reactivity of $Hg(6^3P_0)$ is much less than that of $Hg(6^3P_1)$, but this is not consistent with the present experiment. Kang Yang⁷⁾ proposed that from the conservation of angular momentum, the cross-section of H₂ for quenching Hg(6³P₀) may be smaller than that of alkane. However, our results differ as has been pointed out by Vikis and Moser. 6) The present results suggest the conclusion that if a molecule has a large cross-section $(\gtrsim 1 \text{ Å}^2)$ for the process $6^3P_1 \rightarrow 6^1S_0$, the corresponding 63P₀ cross-section is of the same order of magnitude, and that a molecule with a very small cross-section $(\leq 0.1 \text{ Å}^2)$ for quenching the 6^3P_1 state has a much smaller cross-section to deactivate the 63Po state. If the former case corresponds to the strong coupling between the excited Hg atom and a quenching molecule. the quenching rate of Hg(63P1) would be the same order of magnitude as that of Hg(63P₀), because the degeneracy of ³P₁ state is removed by a collisional perturbation of a quenching molecule (Q),8) and the mixing of two states $Hg(6^3P_1)+Q$ and $Hg(6^3P_0)+Q$ occurs in the course of non-adiabatic transition to $Hg(6^{1}S_{0})+Q$. This seems to explain qualitatively the present results for CO, NO, H₂, and D₂.

Table 1. Ouenching cross-section (σ^2 , \mathring{A}^2) of excited mercury atoms

Quencher	${}^3P_1 \rightarrow {}^1S_0$ this work	$^{3}P_{1} \rightarrow ^{3}P_{0}$ this work	${}^{3}P_{0} \rightarrow {}^{1}S_{0}$		$\sigma^2(^3P_1{\longrightarrow}^1S_0)/\sigma^2(^3P_0{\longrightarrow}^1S_0)$	
			this work	C & M ⁵⁾	this work	V & M ⁶⁾
N_2	≤0.03	0.36	<8×10 ⁻⁶	_		
CO	0.60	2.1	0.21	0.66	2.9	
NO	20	5	8.0	1.62	2.5	
H_2	8.3	≤ 0.1	2.1	0.96	3.9	47
$\mathbf{D_2}$	10.0	≤ 0.1	2.9		3.4	49
CH ₄	0.04	0.03	1.4×10^{-4}	2.86×10^{-4}	290	1400
CO_2	2.48	≈ 0.002	0.035	0.033	71	

¹⁾ A. B. Callear and J. C. McGurk, Chem. Phys. Lett., 6, 417 (1970).

²⁾ A. B. Callear and G. J. Williams, Trans. Faraday Soc., 60, 2158 (1964).

³⁾ J. M. Cambell, S. Penzes, H. S. Sandhu, and O. P. Strauz, Inter. J. Chem. Kinetics, 3, 175 (1971).

⁴⁾ H. Horiguchi and S. Tsuchiya, This Bulletin, 44, 1213 (1971).

⁵⁾ A. B. Callear and J. McGurk, Chem. Phys. Lett., 7, 491 (1970).

⁶⁾ A. C. Vikis and H. C. Moser, J. Chem. Phys., 53, 1491 (1970).

⁷⁾ Kang Yang, J. Amer. Chem. Soc., 89, 5344 (1967).

⁸⁾ V. K. Bykhovskii and E. E. Nikitin, Opt. Spectry., 16, 111 (1964).